
“I run a Linux server, so we’re secure”

András Veres-Szentkirályi

Silent Signal
vsza@silentsignal.hu

18 September 2010

András Veres-Szentkirályi “I run a Linux server, so we’re secure”

mailto:vsza@silentsignal.hu


Linux from a security viewpoint

we’re talking about the kernel, not GNU/Linux distributions

not inherently insecure (satisfying HUP trolls)

numerous security features had been added to the mainline
kernel, such as ASLR and protection against null-pointer
dereferencing
there is possibility for hardening using grsecurity and SELinux

nor inherently secure (the point of this talk)

mainline kernel maintainers not necessarily look at security as
they should be (see also “Security people are leaches” [sic])
it’s being used for enterprisey functionality (eg. running some
bloated proprietary BLOB) more and more, which often
conflicts with security countermeasures

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



Linux from a security viewpoint

we’re talking about the kernel, not GNU/Linux distributions

not inherently insecure (satisfying HUP trolls)

numerous security features had been added to the mainline
kernel, such as ASLR and protection against null-pointer
dereferencing
there is possibility for hardening using grsecurity and SELinux

nor inherently secure (the point of this talk)

mainline kernel maintainers not necessarily look at security as
they should be (see also “Security people are leaches” [sic])
it’s being used for enterprisey functionality (eg. running some
bloated proprietary BLOB) more and more, which often
conflicts with security countermeasures

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



Linux from a security viewpoint

we’re talking about the kernel, not GNU/Linux distributions

not inherently insecure (satisfying HUP trolls)

numerous security features had been added to the mainline
kernel, such as ASLR and protection against null-pointer
dereferencing
there is possibility for hardening using grsecurity and SELinux

nor inherently secure (the point of this talk)

mainline kernel maintainers not necessarily look at security as
they should be (see also “Security people are leaches” [sic])
it’s being used for enterprisey functionality (eg. running some
bloated proprietary BLOB) more and more, which often
conflicts with security countermeasures

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



chroot – basics

Fact: There are lots of applications that need certain
privileges (eg. root) to function properly.

Fact: If an attacker can take over one of these applications
(it’ll happen sooner or later), she can access “everything”.

One common solution is using chroot from the UNIX world.

“A chroot environment can be used to create and host a
separate virtualized copy of the software system. [. . . ] This
also simplifies the common arrangement of running the
potentially-vulnerable parts of a privileged program in a
sandbox, in order to pre-emptively contain a security breach.

Note that chroot is not necessarily enough to contain a
process with root privileges.”

Wikipedia

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



chroot – basics

Fact: There are lots of applications that need certain
privileges (eg. root) to function properly.

Fact: If an attacker can take over one of these applications
(it’ll happen sooner or later), she can access “everything”.

One common solution is using chroot from the UNIX world.

“A chroot environment can be used to create and host a
separate virtualized copy of the software system. [. . . ] This
also simplifies the common arrangement of running the
potentially-vulnerable parts of a privileged program in a
sandbox, in order to pre-emptively contain a security breach.
Note that chroot is not necessarily enough to contain a
process with root privileges.”

Wikipedia

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



chroot – attack

There are several techniques to escape from a chroot “jail”.

Demo: Do a chroot to a subdirectory, leaving the current
directory outside the jail, then chdir("..") a few times.

Use mknod to create a raw disk device, thereby doing pretty
much anything you like to the system.
Use mknod to create /dev/mem and modify kernel memory
Find a carelessly-left hard link that leads outside the jail
(though symbolic links don’t escape jail, hard links do).
Use ptrace to trace a process living outside the jail. We may
be able to modify this program to do our bad stuff on our
behalf.

Almost all jail breaking requires root privileges.

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



chroot – attack

There are several techniques to escape from a chroot “jail”.

Demo: Do a chroot to a subdirectory, leaving the current
directory outside the jail, then chdir("..") a few times.
Use mknod to create a raw disk device, thereby doing pretty
much anything you like to the system.
Use mknod to create /dev/mem and modify kernel memory
Find a carelessly-left hard link that leads outside the jail
(though symbolic links don’t escape jail, hard links do).
Use ptrace to trace a process living outside the jail. We may
be able to modify this program to do our bad stuff on our
behalf.

Almost all jail breaking requires root privileges.

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



chroot – defense

“chroot is not and never has been a security tool” – Alan Cox

Trivial: coders should use setuid() after chroot()

grsecurity can restrict chroot in many ways

no double chroot

enforced chdir("/") after chroot
no mknod

no ptrace outside chroot
full list: http://grsecurity.net/features.php

András Veres-Szentkirályi “I run a Linux server, so we’re secure”

http://grsecurity.net/features.php


NX bit – basics

because of how von Neumann architecture works, there is no
difference for the CPU between data and code (remember
Smashing the Stack for Fun and Profit from 1996?)

writable pages (heap, stack) should not be executable thus
preventing foreign code execution

it can be checked using software methods (PaX, ExecShield)
but causes overhead

Wikipedia: “The NX bit, which stands for No eXecute, is a
technology used in CPUs to segregate areas of memory for use
by either storage of processor instructions (or code) or for
storage of data [. . . ] for security reasons.”

support implemented since Linux 2.6.8 (14 August 2004)

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



NX bit – attack: return to libc

Wikipedia: “A return-to-libc attack is a computer security
attack usually starting with a buffer overflow in which the
return address on the stack is replaced by the address of
another instruction and an additional portion of the stack is
overwritten to provide arguments to this function. This allows
attackers to call preexisting functions without the need to
inject malicious code into a program.”

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



NX bit – defense

Stack smashing protection (SSP): detect stack corruption and
abort process

PaX
ProPolice
StackGuard
StackShield

Address space layout randomization (ASLR): see later

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



ASLR

Wikipedia: “Address space layout randomization (ASLR) is a
computer security technique which involves randomly
arranging the positions of key data areas, usually including the
base of the executable and position of libraries, heap, and
stack, in a process’s address space.”

implemented in a weak form since Linux 2.6.12 (17 June 2005)

better implementation in PaX (2001) and ExecShield

8 or 13 bits makes using brute force feasible

fork(2) keeps randomization

NOP slide, heap spraying

Return to libc was possible to linux-gate.so.1 till 2.6.20

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



ASLR

Wikipedia: “Address space layout randomization (ASLR) is a
computer security technique which involves randomly
arranging the positions of key data areas, usually including the
base of the executable and position of libraries, heap, and
stack, in a process’s address space.”

implemented in a weak form since Linux 2.6.12 (17 June 2005)

better implementation in PaX (2001) and ExecShield

8 or 13 bits makes using brute force feasible

fork(2) keeps randomization

NOP slide, heap spraying

Return to libc was possible to linux-gate.so.1 till 2.6.20

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



ASLR

Wikipedia: “Address space layout randomization (ASLR) is a
computer security technique which involves randomly
arranging the positions of key data areas, usually including the
base of the executable and position of libraries, heap, and
stack, in a process’s address space.”

implemented in a weak form since Linux 2.6.12 (17 June 2005)

better implementation in PaX (2001) and ExecShield

8 or 13 bits makes using brute force feasible

fork(2) keeps randomization

NOP slide, heap spraying

Return to libc was possible to linux-gate.so.1 till 2.6.20

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



Null-pointer dereference

OWASP: “A null-pointer dereference takes place when a
pointer with a value of NULL is used as though it pointed to a
valid memory area.”

CWE: “In very rare circumstances and environments, code
execution is possible.”

NULL page can be mapped with mmap

If the kernel calls the function pointer located at the NULL
page, the attacker can execute her code with kernel privileges.

Fix: mmap min addr in Linux 2.6.23 – workaround has been
published in June 2009 by Tavis and cr0 (SUID PA FTW)

PaX / grsecurity protects against attack like this with
KERNEXEC on x86

Tavis Ormandy found a bug in August 2009 that affects all
Linux kernels since 2001 and is exploitable using NPD

the mmap min addr issue was fixed in 2.6.30.2

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



Null-pointer dereference

OWASP: “A null-pointer dereference takes place when a
pointer with a value of NULL is used as though it pointed to a
valid memory area.”

CWE: “In very rare circumstances and environments, code
execution is possible.”

NULL page can be mapped with mmap

If the kernel calls the function pointer located at the NULL
page, the attacker can execute her code with kernel privileges.

Fix: mmap min addr in Linux 2.6.23 – workaround has been
published in June 2009 by Tavis and cr0 (SUID PA FTW)

PaX / grsecurity protects against attack like this with
KERNEXEC on x86

Tavis Ormandy found a bug in August 2009 that affects all
Linux kernels since 2001 and is exploitable using NPD

the mmap min addr issue was fixed in 2.6.30.2

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



Null-pointer dereference

OWASP: “A null-pointer dereference takes place when a
pointer with a value of NULL is used as though it pointed to a
valid memory area.”

CWE: “In very rare circumstances and environments, code
execution is possible.”

NULL page can be mapped with mmap

If the kernel calls the function pointer located at the NULL
page, the attacker can execute her code with kernel privileges.

Fix: mmap min addr in Linux 2.6.23

– workaround has been
published in June 2009 by Tavis and cr0 (SUID PA FTW)

PaX / grsecurity protects against attack like this with
KERNEXEC on x86

Tavis Ormandy found a bug in August 2009 that affects all
Linux kernels since 2001 and is exploitable using NPD

the mmap min addr issue was fixed in 2.6.30.2

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



Null-pointer dereference

OWASP: “A null-pointer dereference takes place when a
pointer with a value of NULL is used as though it pointed to a
valid memory area.”

CWE: “In very rare circumstances and environments, code
execution is possible.”

NULL page can be mapped with mmap

If the kernel calls the function pointer located at the NULL
page, the attacker can execute her code with kernel privileges.

Fix: mmap min addr in Linux 2.6.23 – workaround has been
published in June 2009 by Tavis and cr0 (SUID PA FTW)

PaX / grsecurity protects against attack like this with
KERNEXEC on x86

Tavis Ormandy found a bug in August 2009 that affects all
Linux kernels since 2001 and is exploitable using NPD

the mmap min addr issue was fixed in 2.6.30.2

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



grsecurity

Wikipedia: “grsecurity is a set of patches for the Linux kernel
with an emphasis on enhancing security. Its typical application
is in computer systems that accept remote connections from
untrusted locations, such as web servers and systems offering
shell access to its users.”

PaX is bundled with it, flags data memory non-executable and
program memory non-writable

RBAC, chroot and other (dmesg, logging, etc.) restrictions

solves a few problems, but hard to configure properly (cf.
proprietary BLOBs)

competing technologies include

SELinux: not invulnerable (see PA case)
OpenVZ: still vulnerable in case of kernel bugs

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



grsecurity

Wikipedia: “grsecurity is a set of patches for the Linux kernel
with an emphasis on enhancing security. Its typical application
is in computer systems that accept remote connections from
untrusted locations, such as web servers and systems offering
shell access to its users.”

PaX is bundled with it, flags data memory non-executable and
program memory non-writable

RBAC, chroot and other (dmesg, logging, etc.) restrictions

solves a few problems, but hard to configure properly (cf.
proprietary BLOBs)

competing technologies include

SELinux: not invulnerable (see PA case)
OpenVZ: still vulnerable in case of kernel bugs

András Veres-Szentkirályi “I run a Linux server, so we’re secure”



Thanks for your attention!

András Veres-Szentkirályi “I run a Linux server, so we’re secure”


