
THAT JWT TALK
JSON WEB TOKENS CONSIDERED HARMFUL

András Veres-Szentkirályi Camp++ 0x7e6

$ whoami

András Veres-Szentkirályi
▶ CISSP, OSCP, GWAPT, SISE
▶ Silent Signal co-founder
▶ pentester, toolmaker

Fahrplan

1 High level
About JWTs
Stateless approach

2 Design issues

3 Cryptography
HMAC
RSA
ECDSA

4 Misc

Why now?

▶ JWTs are literally everywhere by now
▶ PSD2 APIs
▶ long-term tokens for mobile apps

▶ our RSA public key recovery tool from February 2022
▶ CVE-2022-21449: Psychic Signatures in Java from April 2022
▶ and we still encounter low-entropy HMAC secrets in 2022

JWS

▶ JSON Web Signature, RFC 7515
▶ BASE64URL(UTF8(JWS Protected Header)) || ’.’ || BASE64URL(JWS Payload) ||

’.’ || BASE64URL(JWS Signature)

▶ signature is calculated on ASCII(BASE64URL(UTF8(JWS Protected Header)) || ’.’
|| BASE64URL(JWS Payload))

▶ payload might be detached, see Appendix F
▶ header and signature goes into metadata such as HTTP header
▶ payload is replaced with empty string
▶ similar to XML signatures and WS-Security in the SOAP world

JWT

▶ JSON Web Token, RFC 7519
▶ pronounced like the word “jot”

▶ builds on JWS
▶ payload contains set of claims

▶ username
▶ Unix timestamps for issuance and/or expiration

▶ people love using them for stateless session management
▶ http://cryto.net/~joepie91/blog/2016/06/19/

stop-using-jwt-for-sessions-part-2-why-your-solution-doesnt-work/

http://cryto.net/~joepie91/blog/2016/06/19/stop-using-jwt-for-sessions-part-2-why-your-solution-doesnt-work/
http://cryto.net/~joepie91/blog/2016/06/19/stop-using-jwt-for-sessions-part-2-why-your-solution-doesnt-work/

I can make JWT sessions work by. . .

Fahrplan

1 High level
About JWTs
Stateless approach

2 Design issues

3 Cryptography
HMAC
RSA
ECDSA

4 Misc

Cryptographic agility

▶ the alg header offers too much flexibility
▶ that parameter comes from an untrusted source
▶ easiest and thus earliest vulnerability: set it to none
▶ parser differentials

▶ WAF catches none (case sensitive)
▶ parser accepts nOnE (case insensitive)

▶ all that assuming that the server even checks it: fail-open
▶ verify() vs. decode()
▶ assuming another node checked it vs. zero-trust

JWS replay attacks

▶ just resending a valid message can cause problem for non-idempotent things
▶ WS-Security used Timestamp and Nonce
▶ JWS/JWT has jti (JWT ID)
▶ order does matter

▶ the verifier must maintain a list of “used” jti values until expiration
▶ parsing and storing jti before verifying the signature → storage DoS

Key management

▶ “signing . . . is not a tooling problem, but a trust and key distribution problem” (Filippo
Valsorda)
▶ https://docs.google.com/document/d/11yHom20CrsuX8KQJXBBw04s80Unjv8zCg_

A7sPAX_9Y/preview

▶ trusting kid too much can be a problem
▶ self-signed tokens can be created using the jwk and jku parameters

https://docs.google.com/document/d/11yHom20CrsuX8KQJXBBw04s80Unjv8zCg_A7sPAX_9Y/preview
https://docs.google.com/document/d/11yHom20CrsuX8KQJXBBw04s80Unjv8zCg_A7sPAX_9Y/preview

Confidentiality vs. integrity

▶ Base64 layer adds a false sense of confidentiality for some
▶ cf. HTTP Basic authentication
▶ JWE (JSON Web Encryption) can help with this

▶ now you have n+ 1 problems
▶ invalid curve attack (2017)
▶ Bleichenbacher’s attack (pre-finalized versions only)

Fahrplan

1 High level
About JWTs
Stateless approach

2 Design issues

3 Cryptography
HMAC
RSA
ECDSA

4 Misc

HMAC intro

▶ symmetric MAC
▶ easy to understand
▶ HS256 required: HMAC + SHA-256
▶ HS384 and HS512 optional

HMAC problems

▶ HMAC and the underlying SHA-2 is designed to be fast
▶ secret can have low entropy
▶ John the Ripper supports it out of the box

RSA intro

▶ asymmetric signatures
▶ can be verified with the public key
▶ multiple keys → kid

▶ RS256 recommended: RSASSA-PKCS-v1_5 + SHA-256
▶ RS384 and RS512 optional
▶ PSnnn variants are RSASSA-PSS using SHA-256 and MGF1

RSA problems

▶ verifier trusts the header regarding algorithm
▶ what if we replace RSA with HMAC?

▶ key confusion attacks, such as CVE-2017-11424
▶ will the verifier treat the RSA public key as a HMAC key?

▶ do we know the public key at all?
▶ use-case might or might now involve publishing the public key
▶ public keys being kept in secret are not a common threat model
▶ https://blog.silentsignal.eu/2021/02/08/

abusing-jwt-public-keys-without-the-public-key/

https://blog.silentsignal.eu/2021/02/08/abusing-jwt-public-keys-without-the-public-key/
https://blog.silentsignal.eu/2021/02/08/abusing-jwt-public-keys-without-the-public-key/

RSA public key recovery

▶ Although public key cryptosystems guarantee that the private key can’t be derived from
the public key, signatures, ciphertexts, etc., there are usually no such guarantees for the
public key!

▶ Although RSA involves large numbers, really efficient algorithms exist to find the GCD of
numbers since the ancient times (we don’t have to do brute-force factoring).

▶ Although the presented method is probabilistic, in practice we can usually just try all
possible answers. Additionally, our chances grow with the number of known
message-signature pairs.

▶ The main lesson is: one should not rely on the secrecy of public keys, as these parameters
are not protected by mathematical trapdoors.

▶ https://github.com/silentsignal/rsa_sign2n

https://github.com/silentsignal/rsa_sign2n

ECDSA intro

▶ asymmetric signatures
▶ can be verified with the public key
▶ multiple keys → kid
▶ ES256 recommended “plus”: P-256 + SHA-256

▶ compatible with iOS Secure Enclave
▶ ES384 (P-384) and ES512 (P-521) optional

ECDSA app-level problems

▶ G – elliptic curve base point, n× G = Owhere O is the identity element
▶ dA – private key
▶ QA = dA × G – public key
▶ z – leftmost bits of the hash of the message
▶ k – cryptographically secure random integer
▶ (x1, y1) = k × G
▶ signature consists of r = x1 mod n and s = k−1(z + rdA) mod n
▶ if k is ever reused, private key dA can be calculated

▶ see PlayStation 3 signing key

CVE-2022-21449

▶ Psychic Signatures in Java
▶ https://neilmadden.blog/2022/04/19/psychic-signatures-in-java/

▶ affects not only JWT but also SAML assertions, OIDC id tokens
▶ Java 15-18 since the C++ → Java port in 15 introduced the bug
▶ verification steps:

▶ u1 = zs−1 and u2 = rs−1

▶ (x1, y1) = u1 × G+ u2 × QA
▶ signature is valid if r ≡ x1 (mod n)

▶ what if we allow r and s to be 0?

https://neilmadden.blog/2022/04/19/psychic-signatures-in-java/

Fahrplan

1 High level
About JWTs
Stateless approach

2 Design issues

3 Cryptography
HMAC
RSA
ECDSA

4 Misc

JWT injection

▶ JWT might include attributes from an untrusted source
▶ artisanal JSON serialization: '{"name": "' + untrusted + '", ...}'

▶ some JSON parsers even accept colliding keys

Leaks

▶ if something is URL-safe, people will put it into the URL
▶ HTTP Referrer headers
▶ logs: HTTPd, reverse proxy, application server, forward proxy
▶ caches
▶ browser history

Handy Burp tool: JWT Editor

▶ https://portswigger.net/bappstore/26aaa5ded2f74beea19e2ed8345a93dd

▶ https://github.com/PortSwigger/jwt-editor

▶ detection
▶ verification
▶ editing
▶ signing
▶ encryption (JWE)
▶ basic attacks

https://portswigger.net/bappstore/26aaa5ded2f74beea19e2ed8345a93dd
https://github.com/PortSwigger/jwt-editor

PortSwigger JWT labs

▶ https://portswigger.net/web-security/jwt

▶ detailed explanations
▶ 8 live labs hosted by PortSwigger
▶ they link to our rsa_sig2n repository ;)

▶ they even offer a dockerized version of it
▶ all the labs are free

https://portswigger.net/web-security/jwt

Wrapping up

▶ JWS can be used securely for some purposes
▶ JWT should only be used with caution
▶ you shouldn’t pick technologies based on hype
▶ especially if your security depends on it
▶ if something has lots of knobs on it, eventually someone will use it wrong

THANKS!

ANDRÁS VERES-SZENTKIRÁLYI

vsza@silentsignal.hu

facebook.com/silentsignal.hu

@SilentSignalHU

@dn3t

mailto:vsza@silentsignal.hu
https://facebook.com/silentsignal.hu
https://twitter.com/SilentSignalHU
https://twitter.com/dn3t

	High level
	About JWTs
	Stateless approach

	Design issues
	Cryptography
	HMAC
	RSA
	ECDSA

	Misc

