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Plans for today

● Short introduction to the basics of Web 
technologies

● Analyzing the most common attack types 
● Possible fixes and workarounds
● Boot your laptop now!

● Let you be the „hackers”!
● Only a browser is needed
● Everything is safe and legal ;)



  

Why?

● Todays main attack platform is the Web
● „Internet infection

No firewall protection”

● Users don't realize if their data gets compromised 
anymore

● Know your enemy...
● If you want to defend yourself, think like the bad 

guys!
● Sometimes even the good guys think like the bad guys 

;)



  

Client-Server architecture



  

The way we talk



  

HTML

● HyperText Markup Language
● <Tags>Content</Tags>
● Easily readable
● Text-only

● Rendered in the browser
● Binary content is fetched on separate channels



  

HTML example



  

Dynamic content

● The fancy stuff...

● Server Side
● Runs on the server...
● The product is mostly HTML content
● The product is returned to the client
● eg.: PHP, ASP.NET, JSP etc.

● Client Side
● Whole script is downloaded to the client
● The client runs the code it recieves
● eg.: JavaScript, ActiveX, Flash



  

Our client-side toolkit

● HTML:
● <iframe>: Window-in-the-Window
● <script>: Can contain JavaScript code

● JavaScript:
● alert(): Shows a pop-up
● window.location: Redirection



  

XSS

● Aka. Cross-Site Scripting
● Put client-side code into the generated content!
● 3 types

● DOM-based (local)
● Reflective
● Persistent



  

Reflective XSS

● Input parameters from the client used without 
proper filtering …
● Once
● In the providing clients session

● Not that dangerous
● Perfect for phishing!



  

Reflective XSS

● https://bank.com/search.php?
search=<script>window.location='http://evil.com'</script>

● With a little obfuscation:

https://bank.com/search.php?search=%3c
%73%63%72%69%70%74%3e%77%69%6e%64%6f%77%2e%6c%6f
%63%61%74%69%6f%6e%3d%27%68%74%74%70%3a%2f%2f
%65%76%69%6c%2e%63%6f%6d%27%3c%2f
%73%63%72%69%70%74%3e%3c%73%63%72%69%70%74%3e
%77%69%6e%64%6f%77%2e%6c%6f%63%61%74%69%6f%6e%3d
%27%68%74%74%70%3a%2f%2f%65%76%69%6c%2e%63%6f%6d
%27%3c%2f%73%63%72%69%70%74%3e



  

Stored XSS

● Input parameters from the client used without 
proper filtering …
● Stored on server side!
● Accessed many times
● ...by many clients

● Dangerous bastard!



  

XSS demo

● It's your turn! Greet eachother :)
●  Code to use: 

<script>alert(„Hello, my name is ...”)</script>
● <script>: We do scriptin' !
● alert(): Show us a pop-up, with some text!



  

XSS attacks

● Phishing
● Drive-by exploits
● Deface
● Local network attacks
● Container of CSRF

● Will see that bastard later!

● XSS Worms



  

Bypassing the Firewall



  

XSS Worm incidents

● 31. Januray 2007.: Samy – MySpace
● 20 hours: 1 million+ users

● 28. June 2008.: Justin.tv
● 28. September 2009.: Reddit.com
● Future: Yahoo Meme?

● http://www.hackersblog.org/2009/10/11/i-can-predict-the-future/



  

XSS Defense

● Filter the input!
● No tags allowed!

– Is that enough? 
– Not at all...

● Every situation is different
● Balancing between usability and security

– As always

● Filter the output
● Not common...



  

XSS Defense - Users

● Firefox + NoScript (http://noscript.net)
● Built-in XSS protections are crap...

● Content Security Policy (CSP)
● Introduced in Firefox development builds
● Hopfully will merge into the stable versions soon...
● Only partial solution!

● Don't click everything...

http://noscript.net/


  

Expand our architecture



  

RDBMS Quickie

● Relational DataBase Management System
● A place for your data
● Records, Attributes, Tables
● Everything composed in SQL

● Declarative language
● Easy to understand
● Hard to get an expert :)



  

SQL Quickie

● SELECT some_attribute FROM some_table 
WHERE other_attribute=some_value ORDER 
BY some_attribute;

● Get data from more tables:
SELECT a1 FROM t1 UNION SELECT a2 
FROM t2;

● Inserts and Updates:
INSERT INTO t1 (a1,a2) VALUES ('a','2');
UPDATE t1 SET a2='4' WHERE a1='a';



  

RDBMS Example



  

Our little applicaiton

● Simple authentication
● Username, password
● Check if we have a record, where the 

username and the password match
● SELECT * FROM users WHERE name=? AND 

password=?

● Check it out live!



  

Behind the scenes

● Get the parameter
● Construct the query

● SELECT * FROM users WHERE name='admin' 
AND password='mysecretpassword1'

● What if...
● SELECT * FROM users WHERE name='admin' # ' 

AND password=''



  

What else can we do?

● Read other data
● UNION SELECT

● INSERT, UPDATE, DELETE information
● Data manipulation queries
● Query Stacking

● Read the filesystem (!)
● Execute commands (!!)

● Don't own the box please ;)
– Actually, you possibly could...



  

Query stacking



  

Incidents

● 19. June 2006.- Microsoft UK.
● 12. August  2007. - United Nations
● Between January and May 2008 millions of 

vulnerable ASP pages got infected by drive-by 
code, including:
● Trend Micro
● UN again
● Redmond Mag

● 21. January 2008.  - RIAA
● July 2008. – Kaspersky



  

Incidents

● Doesn't seem to be really vulnerable ;)



  

SQLi Defense

● Sanitize your inputs!
● Convert the numbers to numbers!
● Escape the string delimiters from strings!

● ...or better: Use Prepared Statements and 
Framework API's!

● Best Practices
● Hash the passwords!
● Run the DBMS with least possible privileges!
● Use different DB user for different applications!



  

SQLi Defense - Users

● Best practices
● Don't trust IT guys: Use different passwords for 

different sites :)
● Especially if they send back your password in plain 

text :P

● NoScript again
● At least against drive-by attacks...



  

Dive deep into the Browser

● Tabbed browsing FTW!
● Many sessions ...
● … to different sites ...
● … inside the same browser context

● Cookies
● Client-side data storage

● Session identifiers
● (Hopefully) (Pseudo-)Random ID's
● Stored mostly by the client



  

Same-origin Policy

● „... permits scripts running on pages originating 
from the same site to access each other's 
methods and properties with no specific 
restrictions — but prevents access to most 
methods and properties across pages on 
different sites.”

● In the Web 2.0 world sometimes we really want 
other sites to access our content
● AJAX is here for us!
● Not a violation of SoP!



  

Cross-Site Request Forgery

● We can send standard HTTP requests via an 
HTML page
● IFRAMEs, images, etc...
● JavaScript

● As the request goes out, the browser will send 
the cookies belonging to the recieving side
● We are authenticated now!

● Do something evil...



  

CSRF Defense

● Validate form data using random tokens
● An attacker can not read them!

1)Generate a token

2)Remember it somehow (DB)

3)Include as a hidden field in every HTML form

4)Only accept forms which contain the token

● Check the Referer



  

Further information

● Open Web Application Security Project: 
http://www.owasp.org

● XSSed:
http://www.xssed.com

● SQL injection cheat sheet: 
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

● NoScript by Giorgio Maone: 
http://www.noscript.net

http://www.owasp.org/
http://www.xssed.com/
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://www.noscript.net/


  

Thank You!

Any questions?
vpbalint@silentsignal.hu
http://www.silentsignal.hu
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