

Surviving the theatre of war
on the web

Attack and Defense
for

Users, Programmers and Administrators

by Bálint Varga-Perke

Plans for today

● Short introduction to the basics of Web
technologies

● Analyzing the most common attack types
● Possible fixes and workarounds
● Boot your laptop now!

● Let you be the „hackers”!
● Only a browser is needed
● Everything is safe and legal ;)

Why?

● Todays main attack platform is the Web
● „Internet infection

No firewall protection”

● Users don't realize if their data gets compromised
anymore

● Know your enemy...
● If you want to defend yourself, think like the bad

guys!
● Sometimes even the good guys think like the bad guys

;)

Client-Server architecture

The way we talk

HTML

● HyperText Markup Language
● <Tags>Content</Tags>
● Easily readable
● Text-only

● Rendered in the browser
● Binary content is fetched on separate channels

HTML example

Dynamic content

● The fancy stuff...

● Server Side
● Runs on the server...
● The product is mostly HTML content
● The product is returned to the client
● eg.: PHP, ASP.NET, JSP etc.

● Client Side
● Whole script is downloaded to the client
● The client runs the code it recieves
● eg.: JavaScript, ActiveX, Flash

Our client-side toolkit

● HTML:
● <iframe>: Window-in-the-Window
● <script>: Can contain JavaScript code

● JavaScript:
● alert(): Shows a pop-up
● window.location: Redirection

XSS

● Aka. Cross-Site Scripting
● Put client-side code into the generated content!
● 3 types

● DOM-based (local)
● Reflective
● Persistent

Reflective XSS

● Input parameters from the client used without
proper filtering …
● Once
● In the providing clients session

● Not that dangerous
● Perfect for phishing!

Reflective XSS

● https://bank.com/search.php?
search=<script>window.location='http://evil.com'</script>

● With a little obfuscation:

https://bank.com/search.php?search=%3c
%73%63%72%69%70%74%3e%77%69%6e%64%6f%77%2e%6c%6f
%63%61%74%69%6f%6e%3d%27%68%74%74%70%3a%2f%2f
%65%76%69%6c%2e%63%6f%6d%27%3c%2f
%73%63%72%69%70%74%3e%3c%73%63%72%69%70%74%3e
%77%69%6e%64%6f%77%2e%6c%6f%63%61%74%69%6f%6e%3d
%27%68%74%74%70%3a%2f%2f%65%76%69%6c%2e%63%6f%6d
%27%3c%2f%73%63%72%69%70%74%3e

Stored XSS

● Input parameters from the client used without
proper filtering …
● Stored on server side!
● Accessed many times
● ...by many clients

● Dangerous bastard!

XSS demo

● It's your turn! Greet eachother :)
● Code to use:

<script>alert(„Hello, my name is ...”)</script>
● <script>: We do scriptin' !
● alert(): Show us a pop-up, with some text!

XSS attacks

● Phishing
● Drive-by exploits
● Deface
● Local network attacks
● Container of CSRF

● Will see that bastard later!

● XSS Worms

Bypassing the Firewall

XSS Worm incidents

● 31. Januray 2007.: Samy – MySpace
● 20 hours: 1 million+ users

● 28. June 2008.: Justin.tv
● 28. September 2009.: Reddit.com
● Future: Yahoo Meme?

● http://www.hackersblog.org/2009/10/11/i-can-predict-the-future/

XSS Defense

● Filter the input!
● No tags allowed!

– Is that enough?
– Not at all...

● Every situation is different
● Balancing between usability and security

– As always

● Filter the output
● Not common...

XSS Defense - Users

● Firefox + NoScript (http://noscript.net)
● Built-in XSS protections are crap...

● Content Security Policy (CSP)
● Introduced in Firefox development builds
● Hopfully will merge into the stable versions soon...
● Only partial solution!

● Don't click everything...

http://noscript.net/

Expand our architecture

RDBMS Quickie

● Relational DataBase Management System
● A place for your data
● Records, Attributes, Tables
● Everything composed in SQL

● Declarative language
● Easy to understand
● Hard to get an expert :)

SQL Quickie

● SELECT some_attribute FROM some_table
WHERE other_attribute=some_value ORDER
BY some_attribute;

● Get data from more tables:
SELECT a1 FROM t1 UNION SELECT a2
FROM t2;

● Inserts and Updates:
INSERT INTO t1 (a1,a2) VALUES ('a','2');
UPDATE t1 SET a2='4' WHERE a1='a';

RDBMS Example

Our little applicaiton

● Simple authentication
● Username, password
● Check if we have a record, where the

username and the password match
● SELECT * FROM users WHERE name=? AND

password=?

● Check it out live!

Behind the scenes

● Get the parameter
● Construct the query

● SELECT * FROM users WHERE name='admin'
AND password='mysecretpassword1'

● What if...
● SELECT * FROM users WHERE name='admin' # '

AND password=''

What else can we do?

● Read other data
● UNION SELECT

● INSERT, UPDATE, DELETE information
● Data manipulation queries
● Query Stacking

● Read the filesystem (!)
● Execute commands (!!)

● Don't own the box please ;)
– Actually, you possibly could...

Query stacking

Incidents

● 19. June 2006.- Microsoft UK.
● 12. August 2007. - United Nations
● Between January and May 2008 millions of

vulnerable ASP pages got infected by drive-by
code, including:
● Trend Micro
● UN again
● Redmond Mag

● 21. January 2008. - RIAA
● July 2008. – Kaspersky

Incidents

● Doesn't seem to be really vulnerable ;)

SQLi Defense

● Sanitize your inputs!
● Convert the numbers to numbers!
● Escape the string delimiters from strings!

● ...or better: Use Prepared Statements and
Framework API's!

● Best Practices
● Hash the passwords!
● Run the DBMS with least possible privileges!
● Use different DB user for different applications!

SQLi Defense - Users

● Best practices
● Don't trust IT guys: Use different passwords for

different sites :)
● Especially if they send back your password in plain

text :P

● NoScript again
● At least against drive-by attacks...

Dive deep into the Browser

● Tabbed browsing FTW!
● Many sessions ...
● … to different sites ...
● … inside the same browser context

● Cookies
● Client-side data storage

● Session identifiers
● (Hopefully) (Pseudo-)Random ID's
● Stored mostly by the client

Same-origin Policy

● „... permits scripts running on pages originating
from the same site to access each other's
methods and properties with no specific
restrictions — but prevents access to most
methods and properties across pages on
different sites.”

● In the Web 2.0 world sometimes we really want
other sites to access our content
● AJAX is here for us!
● Not a violation of SoP!

Cross-Site Request Forgery

● We can send standard HTTP requests via an
HTML page
● IFRAMEs, images, etc...
● JavaScript

● As the request goes out, the browser will send
the cookies belonging to the recieving side
● We are authenticated now!

● Do something evil...

CSRF Defense

● Validate form data using random tokens
● An attacker can not read them!

1)Generate a token

2)Remember it somehow (DB)

3)Include as a hidden field in every HTML form

4)Only accept forms which contain the token

● Check the Referer

Further information

● Open Web Application Security Project:
http://www.owasp.org

● XSSed:
http://www.xssed.com

● SQL injection cheat sheet:
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

● NoScript by Giorgio Maone:
http://www.noscript.net

http://www.owasp.org/
http://www.xssed.com/
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
http://www.noscript.net/

Thank You!

Any questions?
vpbalint@silentsignal.hu
http://www.silentsignal.hu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

